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Abstract

There has been extensive research of the anterior pituitary gland of livestock and poultry due
to the economic (agricultural) importance of physiological processes controlled by it including re-
production, growth, lactation and stress. Moreover, farm animals can be biomedical models or use-
ful in evolutionary/ecological research. There are for multiple sites of control of the secretion of
anterior pituitary hormones. These include the potential for independent control of proliferation,
differentiation, de-differentiation and/or inter-conversion cell death, expression and translation, post-
translational modification (potentially generating multiple isoforms with potentially different bio-
logical activities), release with or without a specific binding protein and intra-cellular catabolism
(proteolysis) of pituitary hormones. Multiple hypothalamic hypophysiotropic peptides (which may
also be produced peripherally, e.g. ghrelin) influence the secretion of the anterior pituitary hormones.
There is also feedback for hormones from the target endocrine glands. These control mechanisms
show broadly a consistency across species and life stages; however, there are some marked dif-
ferences. Examples from growth hormone, prolactin, follicle stimulating hormone and luteinizing
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hormone will be considered. In addition, attention will be focused on areas that have been ne-
glected including the role of stellate cells, multiple sub-types of the major adenohypophyseal cells,
functional zonation within the anterior pituitary and the role of multiple secretagogues for single
hormones.
© 2005 Published by Elsevier Inc.
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1. Introduction

This review will consider the structure of the anterior pituitary gland, the control of
the secretion of anterior pituitary hormone and the role of isoforms of these hormones.
Attention will be focused on areas where livestock and poultry show specific advantages
(see Section5) and also to arenas that have until recently been neglected.

2. Cells in the anterior pituitary gland

The anterior pituitary gland is composed of a mixture of secretory cells together with
non-secretory folliculo-stellate cells (FS). In sheep and horses, this profile is observed in
both fetal development and post-natal growth[1,2]. In chickens, FS are not detected until
post-hatching[3]. It is likely that sub-types of the major cells (corticotrophs, gonadotrophs,
lactotrophs, somatotrophs and thyrotrophs together with FS) exist with different functional
characteristics. The possibility of there being zonation/anatomical separation of the cell
sub-types has received relatively little attention in livestock species. Zonation would facil-
itate “point to point” control with specific peptides released from areas within the median
eminence and passing via designated portal blood vessels to stimulate specific secretory
cells.

2.1. Secretory cells

The anterior pituitary gland is “classically” considered to be composed of the follow-
ing secretory cells: corticotrophs [producing adenocorticotropic hormone (ACTH)]; go-
nadotrophs [producing luteinizing hormone (LH) and follicle stimulating hormone (FSH)],
lactotrophs or mammotroph [producing prolactin]; somatotrophs [producing growth hor-
mone (GH)]; and thyrotrophs [producing thyrotropin (TSH)]. This situation broadly pertains
to livestock and poultry but with a number of exceptions, some of which will be addressed.

2.1.1. Gonadotrophs
There is frequently the assumption that gonadotrophs produce both LH and FSH. This

is not necessarily the case. In poultry, there are at least two distinct populations of go-
nadotrophs, producing, respectively, LH and FSH[4] (discussed in more detail by Bergh-
man in this volume). Moreover, these have distinctly different embryonic origens[5]. In
sheep, sub-populations of gonadotrophs exit, some containing both LH and FSH and other
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only LH [6]. It is not known whether different sub-populations of gonadotrophs produce
specific isoforms of LH and/or FSH.

2.1.2. Lactotrophs and somatotrophs
In addition to the somatotrophs and lactotrophs, there is another cell-type in the anterior

pituitary gland, the somatolactotroph or somatomammotroph. This synthesizes both GH
and prolactin. This cell-type can be an intermediate in the conversion of somatotrophs to
lactotrophs for instance in turkeys when starting to exhibit incubation behavior[7,8] or in
the opposite direction at the cessation of incubation[9]. It is not clear the extent the release
of GH and prolactin can be independently controlled from somatolactotrophs.

The control of the differentiation of somatotrophs has been extensively examined using
chick embryo pituitary cells (discussed in detailed by Porter and colleagues elsewhere in
this volume). There are marked changes in the number of somatotrophs in the anterior
pituitary gland during development of the chick embryo and during post-hatching growth
[10–13]. Moreover, the somatotrophs undergo changes with increases in secretory granules
[13]. The percentage of reaches a plateau of∼40% of the cells in the caudal lobe of the
anterior pituitary gland which is maintained despite the continued growth of the anterior
pituitary gland[13]. In adult turkeys, there are increases in the number and proliferation
of somatotrophs following the termination of incubating behavior when the number of lac-
totroph is declining[9]. These studies would suggest a “set point” for the number/proportion
of somatotrophs and a mechanism(s) controlling somatotroph number/percentage. More-
over, it would also provide support for GH having importance in late growth and in
the adult.

It may be questioned whether different sub-types of somatotrophs exist and are
stimulated by different secretagogues. Multiple hypothalamic peptides stimulate GH
release from the somatotroph. These include the following: GH releasing hormone
(GHRH), ghrelin and pituitary adenylate cyclase activating peptide (PACAP) acting,
respectively, via GHRH receptors, the GH secretagogue (GHS) receptor (GHSR) and
PACAP receptor and increasing intra-cellular calcium (seeTable 1) (e.g.[14]). In addition,
other peptides increase intra-cellular calcium in somatotrophs. These include leptin (pigs
and chickens), motilin (pigs) and thyrotropin releasing hormone (chicken but not pigs).
What is interesting is that not all somatotrophs respond to all secretagogues (seeTable 1).
This might support that the existence of different sub-types of somatotrophs responding

Table 1
Percentage of porcine and chicken somatotropes (defined based on ability of GHRH to elicit an increase in the
intra-cellular calcium concentration) responding to various other secretagogues by increase in the intra-cellular
calcium concentration

Porcine Chicken

GHRH, 10�M 100a 100a

PACAP, 1�M 96 85
TRH, 1�M N.A. 73
Ghrelin, 1�M 98 12
Leptin 54 58

a By definition.
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to different hypothalamic secretagogues. It is possible that different isoforms of GH or
prolactin are produced by various sub-populations of somatotrophs, lactotrophs and/or
somatolactotrophs.

2.2. Folliculo-stellate cells (FS)

There is increasing interest in the FS exerting a paracrine control of secretory cells in the
anterior pituitary gland. However, this has not received much attention in livestock species as
yet. The presence of G-100 protein is frequently used to distinguish FS. Glial fibrillary acidic
protein is a marker for astrocytes. However, this protein is not detected in FS in the anterior
pituitary gland in some studies (e.g. cattle[15]) but is in others (rat[16]). The FS exert a
paracrine effect on the secretory cells based on rodent studies (reviewed[17]). For example,
growth of lactotrophs can stimulated by indirectly by transforming growth factor-beta3
acting on FS which in turn release fibroblast growth factor[18]. FS also influence hormone
release from secretory cells; mediating effects of steroids on prolactin release (reviewed
[19]). Similarly, interferon-gamma inhibits prolactin release with the effect mediated by
FS[20]. In addition, FS produce interleukin 6 in response to calcitonin[21]. There is little
work on the role of FS in pituitary functioning in livestock species except that bovine FS
have been shown to have�-adrenergic receptors coupled to adenylate cyclase[22] and to
produce vascular endothelial growth factor and follistatin (Gospodarowicz and Lau[23]).

There is presently untapped potential to use of the pituitary FS in livestock for biomedical
models. For instance, the FS of cattle have been employed as models for the proteome of
FS with metallothionein I–II immunoreactivity detected recently[24]. Moreover, there
appears to be a link between FS and aging based on studies in the pig. During aging,
there are marked increases in colloid filled follicles in the anterior pituitary gland[25,26].
The FS, containing G-100 protein, surround the colloid filled follicles and are located in
close association with lactotrophs and gonadotrophs[25,26]. It is reasonable, therefore,
to propose the pig pituitary and its FS as a model for endocrine aging. Moreover, poultry
models may be useful in determining the role of FS. In the chicken, folliculo-stellate cells,
as detected by S-100 immunoreactivity, have been reported in the both the cephalic and
caudal lobes of the anterior pituitary gland[27]. The FS are in contact with secretory cells
that produce LH, GH, POMC and prolactin[1]. There are changes in FS with physiological
state. For instance, FS are not detected in the pituitary of the chick embryo but are apparent
by 4 weeks of age[1]. Moreover, there are changes in the FS in the caudal lobe of the
anterior pituitary following feed withdrawal induction of molt in the hen; the amount of
G-100 immunorectivity (area of staining) increasing initially following resumption of lay
[27]. Moreover, challenges withEscherichia colihave been associated with necrosis of FS
in the anterior pituitary gland[28].

3. Control of secretion of anterior pituitary hormones

There is the potential for multiple sites of control of the secretion of anterior pitu-
itary hormones. These include the potential for independent control of the following: (1)
proliferation, differentiation, de-differentiation and/or inter-conversion, cell death of spe-
cific populations of secretory cells; (2) expression and translation; (3) post-translational
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modification (potentially generating multiple isoforms); (4) release with or without
a specific binding protein and (5) intra-cellular catabolism (proteolysis) of pituitary
hormones.

Geoffrey Harris conceived the physiological system by which the hypothalamus controls
the release of hormones from the anterior pituitary gland with releasing factors from the
median eminence passing through the hypophyseal portal blood vessels to the secretory
cells (reviewed[29]). The concept was essentially that a single releasing factor or hormone
acts in an endocrine manner to elicit release of a hormone with the response proportional
to the dose. It is increasingly clear that the is secretion of anterior pituitary hormones under
control of the following mechanisms:

1. Multiple hypothalamic releasing hormones that may act on secretory cells in specific
zones of the anterior pituitary gland;

2. Paracrine factors within the anterior pituitary gland including the putative influence of
the FS (see discussion of FS and excitory amino-acids);

3. Peripheral hormones/factors acting directly on the secretory cells or FS.

The latter includes hormones from target tissues that exert feedback effects both at the
level of the hypothalamus and anterior pituitary gland (negative feedback: sex steroids on
LH and FSH release, inhibin on FSH release, triiodothyronine on TSH release, insulin-like
growth factor-1 on GH release and glucocorticoids on ACTH release). In addition, hormone
secretion from secretory cells is stimulated by positive feedback acting at the level of the
hypothalamus (e.g. in female mammals, estradiol and, in poultry, progesterone stimulating
the pre-ovulatory LH surge). In addition to the feedback effects, there are peptides that are
produced by peripheral tissues and influence hormone secretion from the anterior pituitary
gland. These may or may not be present in the hypothalamus and/or released into the
portal blood vessels. Examples of such peptides that influence the release of GH include
somatostatin produced by the pancreas and gastro-intestinal tract, ghrelin produced by the
stomach, GHRH produced by the placenta and leptin produced by the adipose tissue and
liver.

3.1. Peptides

While initially there was the assumption none releasing factor for each adenohyophy-
seal hormone, the situation is becoming increasingly complex. The release of LH, TSH
and ACTH are, respectively, stimulated by gonadotropin releasing hormone (GnRH), thy-
rotropin releasing hormone (TRH) and corticotropin releasing hormone (CRH). The situa-
tion with FSH is problematic. The release of both LH and FSH is stimulated by GnRH in
mammals (reviewed see[30,67]). The lamprey GnRH III (lGnRh III) has been proposed
as the endogenous specific FSH releasing factor ([31,32], also reviewed[33]) and appears
to act in that way in cattle[34]. There are three decapeptide releasing hormones for LH
found in the avian hypothalamus; namely cGnRH I, cGnRH II and lGnRh III[35–37,8].
We recently examine compared the ability of the three GnRH peptides to evoke release
of LH and FSH in adult male chickens (broiler breeders). Markedly increased circulating
concentrations of LH were observed with challenges with cGnRH I or II. These peptides
also increased the circulating concentration of FSH but the response was much less robust.
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Table 2
Immunological and biological activities of turkey LH isoform (weights adjusted for protein content)

Isoform Immunological (RIA)
potencya

Biological activity

Progesterone synthesis
in vitroa,b

Ovulation induction
in vivoc

Low dose High dose

1 220 12.3 0/2 (30�g) 2/2 (116�g)
2 137 8.0 0/2 (34�g) 1/2 (67�g)
3 137 4.1 0/2 (49�g) 2/2 (96�g)
4 110 4.4 0/2 (36�g) 2/2 (72�g)
5 110 1.8 1/2 (15�g) 2/2 (30�g)
6 73 N.A. 0/2 (54�g) 2/2 (222�g)

N.A., not available.
a Potency is expressed as a percentage relative to a turkey LH standard at 50%B/B0 for RIA and ED50 for

bioassay (B221B).
b Assayed based on the in vitro chicken granulosa cell assay using progesterone production as the end point[2]

(F. Hertelendy and J. Proudman, unpublished observations).
c Data is expressed as the number of turkey hens exhibiting premature ovulation in response to stimulus. Ovine

LH failed to induce ovulation at 500, 1000 and 2000�g doses (data from H. Opel and J. Proudman, unpublished).

In contrast, lGnRH III evoked only a small response in circulating concentrations of LH
and no change in those of FSH.

Despite the supposedly straight-forward roles for both GH and prolactin, there are
multiple releasing hormones for each. Control for prolactin release is via a series of
releasing factors including vasoactive intestinal peptide (VIP)(+), PACAP(+), TRH(+) and
dopamine(−). The releasing hormones for GH include GHRH, ghrelin, PACAP and TRH
(all stimulatory) and somatostatin (inhibitory) (seeTable 2). It might be questioned on
what basis do we call the peptide, GHRH, as ghrelin or PACAP also stimulate GH release?
Similarly, on what basis do we call TRH as the peptide also stimulates release of PRL
(mammals) and GH (birds) and CRH stimulates TSH release in birds?

3.2. Excitatory amino-acids

There is substantial evidence that excitatory amino-acids such asN-methyl-d-asparate
(NMDA) stimulate the release of anterior pituitary hormones in rodent models. There is,
however, a dearth of information on the direct effects of these in livestock. Consider the
case of GH, NMDA increases its release from rat pituitary cells (e.g.[38,39,11,40–42]).
Similarly, in vivo studies in livestock indicate that NMDA increases GH secretion (cattle
[43]; pigs [44,45]; horses[46]). It is not known whether these effects in livestock reflect
direct effects on the somatotrophs or indirect effects via the hypothalamus. There is,
however, no information in the direct effects of NMDA on somatotrophs of any livestock
species. Moreover, there are no reports of the effects of NMDA influencing the release of
pituitary hormone in poultry except that NMDA has been observed to influence the release
of GnRH from hypothalamic tissue in vitro[47]. It is not clear whether the excitatory
amino-acids that influence GH release originate in the hypothalamus and/or cells within
the anterior pituitary gland, for instance, the FS.
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4. Isoforms to proteomics

There has been tremendous progress made in our understanding of gene expression in the
anterior pituitary gland[48]. In the near future, there will be considerable attention focused
on the pituitary proteome, particularly at the individual cell level. A substantial number
of biologically active peptides have been and it is predicted will be found in the anterior
pituitary gland. For instance, pancreastatin has been found in the pig pituitary gland[12]. In
contrast to the strong interest in the biomedical significance of post-translational isoforms
of anterior pituitary hormones, these isoforms in livestock and poultry have received less
attention. Post-translational isoforms of LH exist with, for instance chicken and porcine LH
[49,13]. These have different biological activities (for chicken LH, seeTable 2). Similarly,
there is evidence of different isoforms of FSH with different biological activities that are
released in livestock mammals[50,51]; also see review[52] and of the� sub-unit of LH, FSH
and TSH[53]. There are multiple post-translational isoforms of prolactin. These include
the following: glycosylated(e.g. ovine[54], porcine[55], turkey [56]), phosphorylated
(e.g. bovine[68]; cleavedprolactin[69] andcleaved and reduced fragmentsof prolactin
(e.g. rat 16 kDa[57]) These isoforms can have different biological activities. For instance,
glycosylated prolactin has reduced pigeon crop assay activity[58]. Phosphorylated prolactin
exhibits different activities than non-phosphorylated prolactin, not being luteotropic but
also antagonizing the mitogenic effects of prolactin[59–61]. The 16 kDa rat prolactin has a
low prolactin activity[57] but exhibits anti-angiogenic activity ([62]; reviewed[63]). The
relative concentrations of different isoforms can exhibit marked changes with physiological
state (e.g. glycosylated versus non-glycosylated prolactin in pigs[64,65]and turkeys[6,7]).

A similar situation exists for GH. Using the example of the chicken, GH isoforms include
the following: (1) a splicing variant expressed in the eye[66] which analogous to the
20 kDa human GH and (2) post-translationally modified isoforms, e.g. phosphorylated[3,4],
glycosylated[9], dimeric and other oligomeric forms[4], proteolytically cleaved and both
cleaved and reduced to yield a 15 kDa fragment[5]. Monomeric GH binds to the GH
receptor[4,70] and is biologically active—stimulating hepatic IGF-1 release and lipolysis
[70]. The glycosylated GH is biologically active but has a different clearance rate[10]. No
GH receptor binding activity is seen with dimer GH, other oligomers of GH or the 15 kDa
fragment of GH[4,5]. However, the 15 kDa GH isomer/fragment has angiogenic activity
as indicated by stimulation of proliferation of endothelial cells[5]. It might be noted that
the profile of GH isoforms in the pituitary exhibit changes during growth and development
with more 15 kDa in the embryonic pituitary gland[4].

5. Advantages of domestic animals in pituitary research

There are advantages of using livestock and poultry for endocrine research. These include
the following: (1) the agricultural/economic importance and hence potential funding (gov-
ernment and private industry) of the reproduction, growth, milk production (mammogenesis,
lactation, etc.) and responses to stress; (2) availability of disparate genetic breeds, varieties
and lines with known genetics (including polymorphisms in candidate genes, e.g. SNPS);
(3) the established body of knowledge on interactions between genotype, phenotype and
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environment; and (4) that livestock and poultry represent multiple evolutionarily lines sep-
arated by about 200 million years ago. Disadvantages of using livestock include the lack of
“knock-out models” and the difficulty in maintaining livestock in many biomedical facilities.
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